Muusikamatemaatika
Siin toimub Muusikamatemaatika käsiraamatu väljatöötamine.
Projekti tegevuste planeerimine toimub lehel http://et.parnu.wikia.com/wiki/Muusikamatemaatika
Muusikamatemaatika käsiraamatu eesmärk on kirjeldada, kuidas muusikalised struktuurid põhinevad matemaatilistel mudelitel ning kuidas matemaatilistele mudelitele tuginedes muusikalisi struktuure luua.
Muusika ja matemaatika ühendamisel tuleb siiski mõista nende eripära: kui matemaatika eesmärk on üldistamine, siis muusika eesmärk on unikaalsus.
Muusikamatemaatika teemad
[muuda]Muusikamatemaatika teemadeks võivad olla näiteks
- heli kui füüsikalise nähtuse matemaatiline modelleerimine, sealhulgas spektraalanalüüs ja helisüntees
- heli ruumiakustiline modelleerimine
- heli psühhoakustiline modelleerimine
- heliridade ja häälestuse matemaatiline modelleerimine
- muusikalise struktuuri matemaatiline modelleerimine, sealhulgas muusikaline hulgateooria
- heliloomingu protsessi matemaatiline modelleerimine, sealhulgas algoritmiline komponeerimine
- helilise analoogsignaali digitaliseerimine
Muusika matemaatilised mudelid kuuluvad kolme valdkonda:
- heliallikas ja matemaatika, mille puhul modelleeritakse muusikainstrumendi füüsikalisi omadusi;
- heli ja matemaatika, mille puhul modelleeritakse heli füüsikalisi omadusi;
- muusikaline struktuur ja matemaatika, mille puhul uuritakse muusika kompositsiooni- ja analüüsimudelite matemaatilist olemust, käsitledes heliteost reeglipärase või juhusliku protsessi tulemusena.
Muusikalise objekti matemaatilise mudeli kirjelduse struktuur
[muuda]Muusikalise objekti matemaatilise mudeli nimetus (versioon pp.kk.aaaa)
- Sõnaline kirjeldus
- Valem
- Joonis
- Simulatsioon
- Rakendused
- Seotud mõisted
- Viited
Muusikaliste objektide matemaatiliste mudelite tähestikuline loend
[muuda]Muusikalisi objekte on loendatud näiteks Vikipeedia loendites Muusika mõisteid, Nüüdismuusika mõisteid ja Elektroonilise muusika mõisteid.
Kirjandus
[muuda]Garet Loy. Musimatics
[muuda]- Sisukord:
- Volume I
- Foreword by Max Mathews xiii
- Preface xv
- About the Author xvi
- Acknowledgments xvii
- 1 Music and Sound 1
- 1.1 Basic Properties of Sound 1
- 1.2 Waves 3
- 1.3 Summary 9
- 2 Representing Music 11
- 2.1 Notation 11
- 2.2 Tones, Notes, and Scores 12
- 2.3 Pitch 13
- 2.4 Scales 16
- 2.5 Interval Sonorities 18
- 2.6 Onset and Duration 26
- 2.7 Musical Loudness 27
- 2.8 Timbre 28
- 2.9 Summary 37
- 3 Musical Scales, Tuning, and Intonation 39
- 3.1 Equal-Tempered Intervals 39
- 3.2 Equal-Tempered Scale 40
- 3.3 Just Intervals and Scales 43
- 3.4 The Cent Scale 45
- 3.5 A Taxonomy of Scales 46
- 3.6 Do Scales Come from Timbre or Proportion? 47
- 3.7 Harmonic Proportion 48
- 3.8 Pythagorean Diatonic Scale 49
- 3.9 The Problem of Transposing Just Scales 51
- 3.10 Consonance of Intervals 56
- 3.11 The Powers of the Fifth and the Octave Do Not Form a Closed System 66
- 3.12 Designing Useful Scales Requires Compromise 67
- 3.13 Tempered Tuning Systems 68
- 3.14 Microtonality 72
- 3.15 Rule of 18 82
- 3.16 Deconstructing Tonal Harmony 85
- 3.17 Deconstructing the Octave 86
- 3.18 The Prospects for Alternative Tunings 93
- 3.19 Summary 93
- 3.20 Suggested Reading 95
- 4 Physical Basis of Sound 97
- 4.1 Distance 97
- 4.2 Dimension 97
- 4.3 Time 98
- 4.4 Mass 99
- 4.5 Density 100
- 4.6 Displacement 100
- 4.7 Speed 101
- 4.8 Velocity 102
- 4.9 Instantaneous Velocity 102
- 4.10 Acceleration 104
- 4.11 Relating Displacement,Velocity, Acceleration, and Time 106
- 4.12 Newton's Laws of Motion 108
- 4.13 Types of Force 109
- 4.14 Work and Energy 110
- 4.15 Internal and External Forces 112
- 4.16 The Work-Energy Theorem 112
- 4.17 Conservative and Nonconservative Forces 113
- 4.18 Power 114
- 4.19 Power of Vibrating Systems 114
- 4.20 Wave Propagation 116
- 4.21 Amplitude and Pressure 117
- 4.22 Intensity 118
- 4.23 Inverse Square Law 118
- 4.24 Measuring Sound Intensity 119
- 4.25 Summary 125
- 5 Geometrical Basis of Sound 129
- 5.1 Circular Motion and Simple Harmonic Motion 129
- 5.2 Rotational Motion 129
- 5.3 Projection of Circular Motion 136
- 5.4 Constructing a Sinusoid 139
- 5.5 Energy of Waveforms 143
- 5.6 Summary 147
- 6 Psychophysical Basis of Sound 149
- 6.1 Signaling Systems 149
- 6.2 The Ear 150
- 6.3 Psychoacoustics and Psychophysics 154
- 6.4 Pitch 156
- 6.5 Loudness 166
- 6.6 Frequency Domain Masking 171
- 6.7 Beats 173
- 6.8 Combination Tones 175
- 6.9 Critical Bands 176
- 6.10 Duration 182
- 6.11 Consonance and Dissonance 184
- 6.12 Localization 187
- 6.13 Externalization 191
- 6.14 Timbre 195
- 6.15 Summary 198
- 6.16 Suggested Reading 198
- 7 Introduction to Acoustics 199
- 7.1 Sound and Signal 199
- 7.2 A Simple Transmission Model 199
- 7.3 How Vibrations Travel in Air 200
- 7.4 Speed of Sound 202
- 7.5 Pressure Waves 207
- 7.6 Sound Radiation Models 208
- 7.7 Superposition and Interference 210
- 7.8 Reflection 210
- 7.9 Refraction 218
- 7.10 Absorption 221
- 7.11 Diffraction 222
- 7.12 Doppler Effect 228
- 7.13 Room Acoustics 233
- 7.14 Summary 238
- 7.15 Suggested Reading 238
- 8 Vibrating Systems 239
- 8.1 Simple Harmonic Motion Revisited 239
- 8.2 Frequency of Vibrating Systems 241
- 8.3 Some Simple Vibrating Systems 243
- 8.4 The Harmonic Oscillator 247
- 8.5 Modes of Vibration 249
- 8.6 A Taxonomy of Vibrating Systems 251
- 8.7 One-Dimensional Vibrating Systems 252
- 8.8 Two-Dimensional Vibrating Elements 266
- 8.9 Resonance (Continued) 270
- 8.10 Transiently Driven Vibrating Systems 278
- 8.11 Summary 282
- 8.12 Suggested Reading 283
- 9 Composition and Methodology 285
- 9.1 Guido's Method 285
- 9.2 Methodology and Composition 288
- 9.3 Musimat: A Simple Programming Language for Music 290
- 9.4 Program for Guido's Method 291
- 9.5 Other Music Representation Systems 292
- 9.6 Delegating Choice 293
- 9.7 Randomness 299
- 9.8 Chaos and Determinism 304
- 9.9 Combinatorics 306
- 9.10 Atonality 311
- 9.11 Composing Functions 317
- 9.12 Traversing and Manipulating Musical Materials 319
- 9.13 Stochastic Techniques 332
- 9.14 Probability 333
- 9.15 Information Theory and the Mathematics of Expectation 343
- 9.16 Music, Information, and Expectation 347
- 9.17 Form in Unpredictability 350
- 9.18 Monte Carlo Methods 360
- 9.19 Markov Chains 363
- 9.20 Causality and Composition 371
- 9.21 Learning 372
- 9.22 Music and Connectionism 376
- 9.23 Representing Musical Knowledge 390
- 9.24 Next-Generation Musikalische Würfelspiel 400
- 9.25 Calculating Beauty 406
- Appendix A 409
- A.1 Exponents 409
- A.2 Logarithms 409
- A.3 Series and Summations 410
- A.4 About Trigonometry 411
- A.5 Xeno's Paradox 414
- A.6 Modulo Arithmetic and Congruence 414
- A.7 Whence 0.161 in Sabine's Equation? 416
- A.8 Excerpts from Pope John XXII's Bull Regarding Church Music 418
- A.9 Greek Alphabet 419
- Appendix B 421
- B.1 Musimat 421
- B.2 Music Datatypes in Musimat 439
- B.3 Unicode (ASCII) Character Codes 450
- B.4 Operator Associativity and Precedence in Musimat 450
- Glossary 453
- Notes 459
- References 465
- Equation Index 473
- Subject Index
- Volume I
- Volume II
- Foreword by John Chowning
- Preface
- 1 Digital Signals and Sampling
- 1.1 Measuring the Ephemeral
- 1.2 Analog-to-digital Conversion
- 1.3 Aliasing
- 1.4 Digital-to-analog Conversion
- 1.5 Binary Numbers
- 1.6 Synchronization
- 1.7 Discretization
- 1.8 Precision and Accuracy
- 1.9 Quantization
- 1.10 Noise and Distortion
- 1.11 Information Density of Digital Audio
- 1.12 Codecs
- 1.13 Further Refinements
- 1.14 Cultural Impact of Digital Audio
- 1.15 Summary
- 2 Musical Signals
- 2.1 Why Imaginary Numbers?
- 2.2 Operating with Imaginary Numbers
- 2.3 Complex Numbers
- 2.4 de Moivre's Theorem
- 2.5 Euler's Formula
- 2.6 Phasors
- 2.7 Graphing Complex Signals
- 2.8 Spectra of Complex Sampled Signals
- 2.9 Multiplying Phasors
- 2.10 Graphing Complex Spectra
- 2.11 Analytic Signals
- 2.12 Summary
- 3 Spectral Analysis and Synthesis
- 3.1 Introduction to the Fourier Transform
- 3.2 Discrete Fourier Transform
- 3.3 The DFT in Action
- 3.4 The Inverse Discrete Fourier Transform
- 3.5 Analyzing Real-world Signals
- 3.6 Windowing
- 3.7 Fast Fourier Transform
- 3.8 Properties of the Discrete Fourier Transform
- 3.9 A Practical Hilbert Transform
- 3.10 Summary
- 4 Convolution
- 4.1 The Rolling Shutter Camera
- 4.2 Defining Convolution
- 4.3 Numerical Examples of Convolution
- 4.4 Convolving Spectra
- 4.5 Convolving Signals
- 4.6 Convolution and the Fourier Transform
- 4.7 Using the FFT for Convolution
- 4.8 The Domain Symmetry between Signals and Spectra
- 4.9 Convolution and Sampling Theory
- 4.10 Convolution and Windowing
- 4.11 Correlation Functions
- 4.12 Summary
- 4.13 Suggested Reading
- 5 Filtering
- 5.1 Tape Recorder as a Model of Filtering
- 5.2 Introduction to Filtering
- 5.3 A Simple Filter
- 5.4 Finding the Frequency Response
- 5.5 Linearity and Time Invariance of Filters
- 5.6 FIR Filters
- 5.7 IIR Filters
- 5.8 Canonical Filter
- 5.9 Time-Domain Behavior of Filters
- 5.10 Filtering as Convolution
- 5.11 The Z Transform
- 5.12 The Z Transform of the General Difference Equation
- 5.13 Filter Families
- 5.14 Summary
- 6 Resonance
- 6.1 The Derivative
- 6.2 Differential Equations
- 6.3 Transient Vibrations
- 6.4 Mathematics of Resonance
- 6.5 Summary
- 7 Wave Equation
- 7.1 One-dimensional Wave Equation and String Motion
- 7.2 An Example
- 7.3 Modeling Vibration with Finite Difference Equations
- 7.4 Striking Points, Plucking Points, and Spectra
- 7.5 Summary
- 8 Acoustical Systems
- 8.1 Dissipation and Radiation
- 8.2 Acoustical Current
- 8.3 Linearity of Frictional Force
- 8.4 Inertance, Inductive Reactance
- 8.5 Compliance, Capacitive Reactance
- 8.6 Reactance and Alternating Current
- 8.7 Capacitive Reactance and Frequency
- 8.8 Inductive Reactance and Frequency
- 8.9 Combining Resistance, Reactance and Alternating Current
- 8.10 Resistance and Alternating Current
- 8.11 Capacitance and alternating current
- 8.12 Acoustical Impedance
- 8.13 Sound Propagation and Sound Transmission
- 8.14 Input Impedance: Fingerprinting a Resonant System
- 8.15 Scattering Junctions
- 8.16 Summary
- 8.17 Suggested Reading
- 9 Sound Synthesis
- 9.1 Forms of Synthesis
- 9.2 A Graphical Patch Language for Synthesis
- 9.3 Amplitude Modulation
- 9.4 Frequency Modulation
- 9.5 Vocal Synthesis
- 9.6 Synthesizing Concert Hall Acoustics
- 9.7 Physical Modeling
- 9.8 Source Models and Receiver Models
- 9.9 Summary
- 10 Dynamic Spectra
- 10.1 Gabor's Elementary Signal
- 10.2 The Short-time Fourier Transform
- 10.3 Phase Vocoder
- 10.4 Improving on the Fourier Transform
- 10.5 Summary
- 10.6 Suggested Reading
- 10.7 Foundations
- 11 Epilogue
- Appendix
- A.1 About Algebra
- A.2 About Trigonometry
- A.3 Series and Summations
- A.4 Trigonometric Identities
- A.5 Modulo Arithmetic And Congruence
- A.6 Finite Difference Approximations
- A.7 Walsh-Hadamard Transform
- A.8 Sampling, Reconstruction, and the Sinc Function
- A.9 Fourier Shift Theorem
- A.10 Spectral Effects of Ring Modulation
- Glossary
- Equation Index
- Subject Index
- Volume II
Dave Benson. Music, a mathematical offering
[muuda]- Sisukord
- Preface ix
- Introduction ix
- Books xii
- Acknowledgements xiii
- Chapter 1. Waves and harmonics 1
- 1.1. What is sound? 1
- 1.2. The human ear 3
- 1.3. Limitations of the ear 8
- 1.4. Why sine waves? 13
- 1.5. Harmonic motion 14
- 1.6. Vibrating strings 15
- 1.7. Sine waves and frequency spectrum 16
- 1.8. Trigonometric identities and beats 18
- 1.9. Superposition 21
- 1.10. Damped harmonic motion 23
- 1.11. Resonance 26
- Chapter 2. Fourier theory 30
- 2.1. Introduction 31
- 2.2. Fourier coefficients 31
- 2.3. Even and odd functions 37
- 2.4. Conditions for convergence 39
- 2.5. The Gibbs phenomenon 43
- 2.6. Complex coefficients 47
- 2.7. Proof of Fej´er’s Theorem 48
- 2.8. Bessel functions 50
- 2.9. Properties of Bessel functions 54
- 2.10. Bessel’s equation and power series 55
- 2.11. Fourier series for FM feedback and planetary motion 60
- 2.12. Pulse streams 63
- 2.13. The Fourier transform 64
- 2.14. Proof of the inversion formula 68
- 2.15. Spectrum 70
- 2.16. The Poisson summation formula 72
- 2.17. The Dirac delta function 73
- 2.18. Convolution 77
- 2.19. Cepstrum 79
- 2.20. The Hilbert transform and instantaneous frequency 80
- 2.21. Wavelets 81
- Chapter 3. A mathematician’s guide to the orchestra 83
- 3.1. Introduction 83
- 3.2. The wave equation for strings 85
- 3.3. Initial conditions 91
- 3.4. The bowed string 94
- 3.5. Wind instruments 99
- 3.6. The drum 103
- 3.7. Eigenvalues of the Laplace operator 109
- 3.8. The horn 113
- 3.9. Xylophones and tubular bells 114
- 3.10. The mbira 122
- 3.11. The gong 124
- 3.12. The bell 129
- 3.13. Acoustics 133
- Chapter 4. Consonance and dissonance 136
- 4.1. Harmonics 136
- 4.2. Simple integer ratios 137
- 4.3. History of consonance and dissonance 139
- 4.4. Critical bandwidth 142
- 4.5. Complex tones 143
- 4.6. Artificial spectra 144
- 4.7. Combination tones 147
- 4.8. Musical paradoxes 150
- Chapter 5. Scales and temperaments: the fivefold way 153
- 5.1. Introduction 154
- 5.2. Pythagorean scale 154
- 5.3. The cycle of fifths 155
- 5.4. Cents 157
- 5.5. Just intonation 159
- 5.6. Major and minor 160
- 5.7. The dominant seventh 161
- 5.8. Commas and schismas 162
- 5.9. Eitz’s notation 164
- 5.10. Examples of just scales 165
- 5.11. Classical harmony 173
- 5.12. Meantone scale 176
- 5.13. Irregular temperaments 181
- 5.14. Equal temperament 190
- 5.15. Historical remarks 193
- Chapter 6. More scales and temperaments 200
- 6.1. Harry Partch’s 43 tone and other just scales 200
- 6.2. Continued fractions 204
- 6.3. Fifty-three tone scale 213
- 6.4. Other equal tempered scales 217
- 6.5. Thirty-one tone scale 219
- 6.6. The scales of Wendy Carlos 221
- 6.7. The Bohlen–Pierce scale 224
- 6.8. Unison vectors and periodicity blocks 227
- 6.9. Septimal harmony 232
- Chapter 7. Digital music 235
- 7.1. Digital signals 235
- 7.2. Dithering 237
- 7.3. WAV and MP3 files 238
- 7.4. MIDI 241
- 7.5. Delta functions and sampling 242
- 7.6. Nyquist’s theorem 244
- 7.7. The z-transform 246
- 7.8. Digital filters 247
- 7.9. The discrete Fourier transform 250
- 7.10. The fast Fourier transform 253
- Chapter 8. Synthesis 255
- 8.1. Introduction 255
- 8.2. Envelopes and LFOs 256
- 8.3. Additive Synthesis 258
- 8.4. Physical modeling 260
- 8.5. The Karplus–Strong algorithm 262
- 8.6. Filter analysis for the Karplus–Strong algorithm 264
- 8.7. Amplitude and frequency modulation 265
- 8.8. The Yamaha DX7 and FM synthesis 268
- 8.9. Feedback, or self-modulation 274
- 8.10. CSound 278
- 8.11. FM synthesis using CSound 284
- 8.12. Simple FM instruments 286
- 8.13. Further techniques in CSound 290
- 8.14. Other methods of synthesis 292
- 8.15. The phase vocoder 293
- 8.16. Chebyshev polynomials 293
- Chapter 9. Symmetry in music 296
- 9.1. Symmetries 296
- 9.2. The harp of the Nzakara 307
- 9.3. Sets and groups 310
- 9.4. Change ringing 314
- 9.5. Cayley’s theorem 317
- 9.6. Clock arithmetic and octave equivalence 319
- 9.7. Generators 320
- 9.8. Tone rows 322
- 9.9. Cartesian products 324
- 9.10. Dihedral groups 325
- 9.11. Orbits and cosets 327
- 9.12. Normal subgroups and quotients 328
- 9.13. Burnside’s lemma 330
- 9.14. Pitch class sets 332
- 9.15. P´olya’s enumeration theorem 336
- 9.16. The Mathieu group M12 341
- Appendix A. Answers to almost all exercises 344
- Appendix B. Bessel functions 360
- Appendix C. Complex numbers 369
- Appendix D. Dictionary 372
- Appendix E. Equal tempered scales 377
- Appendix F. Frequency and MIDI chart 379
- Appendix I. Intervals 380
- Appendix J. Just, equal and meantone scales compared 383
- Appendix L. Logarithms 385
- Appendix M. Music theory 389
- Appendix O. Online papers 396
- Appendix P. Partial derivatives 443
- Appendix R. Recordings 446
- Appendix W. The wave equation 451
- Green’s identities 452
- Gauss’ formula 452
- Green’s functions 454
- Hilbert space 455
- The Fredholm alternative 457
- Solving Laplace’s equation 459
- Conservation of energy 462
- Uniqueness of solutions 463
- Eigenvalues are nonnegative and real 463
- Orthogonality
- Inverting the Laplace operator 464
- Compact operators 466
- The inverse of the Laplace operator is compact 467
- Eigenvalue stripping 468
- Solving the wave equation 469
- Polyhedra and finite groups 470
- An example 471
- Bibliography 477
- Index 493
John Fauvel, Raymond Floods, Robin Wilson (ed.). Music and Mathematics. From Pythagoras to Fractals
[muuda]http://www.ester.ee/record=b2448376*est
- Sisukord:
- Part I: Music and mathematis through histroy
- Part II: The mathematics of musical sound
- Part III: Mathematical structure in music
- Part IV: The composer speaks (mikrotonaalsus ja fraktalid muusikas)
Leon Harkleroad. The Math behind the Music
[muuda]http://www.ester.ee/record=b2198763*est
- Sisukord:
- 1 Mathematics and Music, a Duet
- 2 Pitch: The Ground of Music
- 3 Tuning Up
- 4 How to Vary a Theme Mathematically
- 5 Bells and Groups
- 6 Music by Chance
- 7 Pattern, Pattern, Pattern
- 8 Sight Meets Sound
- 9 How NOT to Mix Mathematics and M;usic
Raammatu lisa: näidete CD
David Wright. Mathematics and Music
[muuda]http://www.ester.ee/record=b2749919*est
- Sisukord:
- 1 Basic Mathematical and Musical Concepts
- 2 Horizontal Structures
- 3 Harmony and Related Numerolgy
- 4 Ratios and Musical Intervals
- 5 Logarithms and Musical Intervals
- 6 Chromatic Scales
- 7 Octave Idendification and Modular Arithmetic
- 8 Algebraic Properties of the Integers
- 9 The Integers as Intervals
- 10 Timbre and Periodic Functions
- 11 The Rational Numbers as Musical Intervals
- 12 Tuning the Scale to Obtain Rational Intervals